Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.

Identifieur interne : 000024 ( Main/Exploration ); précédent : 000023; suivant : 000025

The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.

Auteurs : David Landry [France] ; Manuel González-Fuente [France] ; Laurent Deslandes [France] ; Nemo Peeters [France]

Source :

RBID : pubmed:32770627

Abstract

The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.

DOI: 10.1111/mpp.12977
PubMed: 32770627
PubMed Central: PMC7488467


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.</title>
<author>
<name sortKey="Landry, David" sort="Landry, David" uniqKey="Landry D" first="David" last="Landry">David Landry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Fuente, Manuel" sort="Gonzalez Fuente, Manuel" uniqKey="Gonzalez Fuente M" first="Manuel" last="González-Fuente">Manuel González-Fuente</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deslandes, Laurent" sort="Deslandes, Laurent" uniqKey="Deslandes L" first="Laurent" last="Deslandes">Laurent Deslandes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peeters, Nemo" sort="Peeters, Nemo" uniqKey="Peeters N" first="Nemo" last="Peeters">Nemo Peeters</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32770627</idno>
<idno type="pmid">32770627</idno>
<idno type="doi">10.1111/mpp.12977</idno>
<idno type="pmc">PMC7488467</idno>
<idno type="wicri:Area/Main/Corpus">000157</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000157</idno>
<idno type="wicri:Area/Main/Curation">000157</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000157</idno>
<idno type="wicri:Area/Main/Exploration">000157</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.</title>
<author>
<name sortKey="Landry, David" sort="Landry, David" uniqKey="Landry D" first="David" last="Landry">David Landry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Fuente, Manuel" sort="Gonzalez Fuente, Manuel" uniqKey="Gonzalez Fuente M" first="Manuel" last="González-Fuente">Manuel González-Fuente</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deslandes, Laurent" sort="Deslandes, Laurent" uniqKey="Deslandes L" first="Laurent" last="Deslandes">Laurent Deslandes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peeters, Nemo" sort="Peeters, Nemo" uniqKey="Peeters N" first="Nemo" last="Peeters">Nemo Peeters</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan</wicri:regionArea>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
<wicri:noRegion>Castanet-Tolosan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32770627</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mpp.12977</ELocationID>
<Abstract>
<AbstractText>The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Landry</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6147-8580</Identifier>
<AffiliationInfo>
<Affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>González-Fuente</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-2960-2657</Identifier>
<AffiliationInfo>
<Affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deslandes</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1974-5144</Identifier>
<AffiliationInfo>
<Affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peeters</LastName>
<ForeName>Nemo</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1802-0769</Identifier>
<AffiliationInfo>
<Affiliation>Laboratoire des Interactions Plantes Micro-organismes (LIPM), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ANR-10-LABX-41</GrantID>
<Agency>Agence Nationale de la Recherche</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>ANR-11-IDEX-0002-02</GrantID>
<Agency>Agence Nationale de la Recherche</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ralstonia solanacearum </Keyword>
<Keyword MajorTopicYN="N">effectome</Keyword>
<Keyword MajorTopicYN="N">immunity</Keyword>
<Keyword MajorTopicYN="N">susceptibility</Keyword>
<Keyword MajorTopicYN="N">targets</Keyword>
<Keyword MajorTopicYN="N">type III effectors</Keyword>
<Keyword MajorTopicYN="N">virulence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32770627</ArticleId>
<ArticleId IdType="doi">10.1111/mpp.12977</ArticleId>
<ArticleId IdType="pmc">PMC7488467</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:419-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27359369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 May 21;161(5):1074-1088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Mar;23(3):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20121447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Dec;192(4):976-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21902695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Nov 18;6(11):e1001202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Aug;199(3):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23692030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Nov;19(11):2459-2472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30073750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Jul;188(13):4903-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16788199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2013 Nov;6(6):614-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 03;6:27058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27257085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Apr 12;7(2):e00359-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27073091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(1):51-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26306858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Pathol J. 2020 Feb;36(1):43-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32089660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:261-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26905651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Apr;36(2):261-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10792715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Mar;13(3):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10707351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Sep;20(9):1237-1251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31218811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Sep;23(9):1197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(4):419-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Apr 05;10:418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31024592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2975-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2020 Mar 12;523(3):759-765</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31948763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 May 21;161(5):1089-1100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Nov 18;16:975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26581393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Jul;11(7):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9650298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1713-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19493968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 2017 Jul;163(7):992-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28708051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Dec;17(12):1376-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15597743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 Aug;13(6):614-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 31;415(6871):497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Feb 1;13(3):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8313899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Apr 18;344(6181):299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24744375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Dec;58(5):1406-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2017 Nov 15;7:467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29188194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2020 Mar 15;21(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32183439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Apr;20(4):533-546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30499216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2018 Apr;20(4):1330-1349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29215193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Oct;60(2):218-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19519800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Apr;186(8):2309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15060033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Nov;73(21):6790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2020 Jun;55:52-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32259743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):941-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2018;1734:209-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29288457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Nov 28;20(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31795135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jul;29(7):1555-1570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28600390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2016 Feb;15(2):598-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26637540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1992 Oct;6(20):3065-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1479894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2013 Nov 26;4(6):e00875-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24281716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 2005 Sep;151(Pt 9):2873-2884</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Sep;172(9):4836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2203731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Apr;15(3):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24745046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Mar 15;10:506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30930881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1578:143-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28220421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicon. 2016 Oct;121:109-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27616453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Dec 06;14:859</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Oct;15(10):1058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2013 Sep;14(7):651-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2019 Aug;32(8):949-960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30785360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8024-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1733-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2017 Aug;19(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28252830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Nov;54(4):863-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):938-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Nov;20(3):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 May;22(5):538-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:67-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14620-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 2009 Jul;155(Pt 7):2235-2244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19406897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2019 Aug 6;7:e7346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31579561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Dec 02;6(12):e1001216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21151961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2020 Jul;21(7):999-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32285606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Dec 1;59(12):2576-2589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30165674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Apr 08;16:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2019 Nov 13;26(5):638-649.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31628081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Mar 25;291(13):6813-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26823466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Aug;20(8):1163-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31305008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Apr;20(4):547-561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30499228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2020 Aug 8;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32770627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2014 Dec 23;5(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Jan;19(1):129-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27768829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jan;19(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Jul;53(1):115-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 May;17(4):553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300048</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Landry, David" sort="Landry, David" uniqKey="Landry D" first="David" last="Landry">David Landry</name>
</noRegion>
<name sortKey="Deslandes, Laurent" sort="Deslandes, Laurent" uniqKey="Deslandes L" first="Laurent" last="Deslandes">Laurent Deslandes</name>
<name sortKey="Gonzalez Fuente, Manuel" sort="Gonzalez Fuente, Manuel" uniqKey="Gonzalez Fuente M" first="Manuel" last="González-Fuente">Manuel González-Fuente</name>
<name sortKey="Peeters, Nemo" sort="Peeters, Nemo" uniqKey="Peeters N" first="Nemo" last="Peeters">Nemo Peeters</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32770627
   |texte=   The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32770627" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020